CDF Status and Tevatron Physics Results (II)

Florencia Canelli FRA Review April 20/21, 2007

Outline

- CDF perspective
 - > Detector operations
 - > High luminosity running
 - > Data processing
 - > People resources
 - > Publications
- CDF and DO physics highlights and prospects Part II
 - > Diboson
 - > Top quark properties
 - > Top quark mass
 - > W boson mass
 - > W boson width
 - > Standard model Higgs
- Conclusions

Collaboration

Fermilab group: ~60 authors including 3 Wilson Fellows, 10 postdocs

Operations and performance

Total luminosity:

~2.7 fb⁻¹ delivered, ~2.2 fb⁻¹ to tape

- Stable collection of data: taking efficiency 85% (2003-present)
- Silicon lifetime not expected to be a problem
- Central Tracker aging fixed in 2004 with addition of oxygen
- Trigger and Data Acquisition system evolving with luminosity

2003 2007

Level 1 trigger: $12KHz \Rightarrow 35KHz$

Level 2 trigger: $300Hz \Rightarrow 800Hz$

Level 3 trigger: $24MB/s \Rightarrow 100MB/s$

Dataset has doubled each of the last 4 years

Trigger at high luminosities

- Bulk of [high- p_T] triggers (e.g. Higgs) are fully functional to at least 300e30
 - > Identified a few triggers with unacceptable rates
 - Upgrades will help to deal with these
 - CAL upgrade L2 cluster finder for better MET resolution
 - XFT upgrade L2 reduce rate for high p_T muons
 - Using "dynamic prescaling" to optimize physics and bandwidth
 - High rate triggers have large prescale at high luminosity
 - Prescales relaxed as bandwidth becomes available at low luminosity

Physics at high luminosities

Computing

Resources:

- > 1 THz CPU @ Fermilab for data processing (FARM)
- > 8 THz CPU @ Fermilab for user analysis and Monte Carlo generation
- > 2.5 THz CPU off-site for Monte Carlo generation
- > Also exploits GRID
- FARM can process 25M events per day
 - ➤ We log 4-5 M events per day
- CDF uses a one pass data processing scheme
 - > Data processed every 6-8 weeks
 - > Use final calibration, alignment, reconstruction
 - > Publication ready data available up to February 2007 (~2 fb-1)
- Data validation and analysis ntuples follow FARMs by 4-6 weeks

Human resources available

	<i>C</i> Y 2007	2009
Total for Operations	124	102
Resources Available	392	236
FTE for Physics	392 - 124 = 268	134
Post Doc's	101	53
Students	147	77

Operations include: detector, offline, algorithms, management

- Collaboration members available in units of FTE
- Expect healthy physics program through 2009
- ~30% more FTE in CY07 than estimated in CY05!
 - > Delay in LHC turn-on
 - > Tevatron and CDF experiment running very well
 - > Physics and leadership opportunities at CDF

Publications

- Publications submitted+accepted+published
 - > 135 Run II publications
 - > We also have >50 additional papers under internal review!
 - On track for 40+ publications in 2007

More than 100 ongoing PhD theses

WZ observation/ZZ evidence

• Summer 2006, $\int L dt = \sim 0.8 \text{ pb}^{-1}$

D0: Observe 12 events with expected background of 3.6 ± 0.2 and signal of 7.5 ± 1.2

WZ evidence: 3.3 σ significance, σ = 4.0^{+1.9}_{-1.5} (stat+syst) pb CDF σ < 6.34 pb (95% *C.*L.)

- Fall 2006, $\int L dt = 1.1 \text{ pb}^{-1}$ CDF: improved lepton identification (x2), added triggers (~10%), added data (30-40%)

 WZ observation: 6 σ sig., $\sigma = 5.0^{+1.8}_{-1.6}$ (stat+syst) pb
- Winter 2007, $\int L dt = 1.1 \text{ pb}^{-1}$ ZZ evidence: 3 σ sig., $\sigma = 1.14^{+1.1}_{-0.8}$ (stat+syst) pb

Moving towards smaller cross-sections

Given enough time (data) we can get there

Top quark properties

- Top physics only studied at the Tevatron
- Probing top properties with unprecedented precision
- Some examples with 1fb⁻¹...

Top mass

 $M_{top} = 170.9 \pm 1.1(stat.) \pm 1.1(JES) \pm 1.0(syst.) GeV/c^2$ 40% improvement in one year!

- CDF added the all-hadronic decay mode with in-situ JES uncertainty (20% overall improvement -> will compete with lepton+jets channel)
- Tevatron can reach 1 GeV uncertainty (similar to LHC goal) using the full Run II dataset

W mass

- best Systematic uncertainties dominated by statistics of calibration data:
 - \triangleright Looking forward to $\delta M_W < 25$ MeV from 1.5fb⁻¹ of CDF data
 - Also the most precise measurement of the W width by a single experiment: $\Gamma_W = 2032 \pm 71 \text{ MeV/c}^2$

Higgs

- M_{top} and M_W constraint on Higgs mass is important:
 - > Tevatron measurements hint the existence of a low mass Higgs
- Current indirect limits on Higgs

$$\rightarrow$$
 M_{Higgs} = 76 +33₋₂₄ GeV

- > M_{Higgs} < 144 GeV
- Precision of δM_{top} 2 GeV, δM_W = 25 MeV translates in $\delta M_{Higgs}/M_{Higgs}$ = 37%
- Expected Tevatron
 precision could constrain it to ~25%
 using the full Run II dataset

Tevatron great place to find a Higgs in the expected range!

Direct Higgs searches

- Improvements in the acceptance, better b-tagging and jet resolution algorithms, analysis techniques, exploiting better understanding of the backgrounds
 - > ZH: With the same luminosity in 6 months the limit improved by a factor of ~50%
 - > WH: A factor of 2 better limit than previous WH analysis with 1fb-1

Higgs combined limits

 DO and CDF improved analysis make the experiment results comparable to previous Tevatron combination

Summer'06 Tevatron

 Both experiments show similar sensitivities across M_{Higgs}

Prospects on Higgs searches

- Still room for improvement...
- Both collaborations working on improving acceptance, better tools and analysis techniques

Standard secondar y vertex b-tagging petNN_3_neuroin jetProbPos lBL_nn_bl LBL_nn_bc

Conclusions

- DO and CDF are in good shape:
 - > Detector performance is healthy
 - > Running at high luminosity
 - > Collecting high quality data at high rate
- The collider physics program is rich and ground-breaking:
 - > Important results came out of the Tevatron last year
 - > Impressive amount of publications from both experiments
 - > Expect to continue this trend until the end of Run II